skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palmer, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Due to differences between air and debris motions, debris centrifuging creates bias in wind estimates based on Doppler velocities and radar wind retrievals in tornadoes. Anomalous radial divergence, azimuthal wind underestimation, and vertical velocity bias associated with debris centrifuging can lead to erroneous interpretations of tornado intensity and structure from radar data. A novel spectral velocity correction technique is developed to reduce bias by identifying rain and debris motion in radar signals using dual-polarization spectral density estimation and fuzzy logic classification. This technique successfully improves Doppler velocity estimates in simulated S-band polarimetric time series data, although debris concentration modulates both the magnitude and correctability of velocity bias. Large bias magnitudes associated with high debris concentrations are the most difficult to fully correct using this technique, especially at low elevation angles and near the center of the tornado. However, the magnitudes of corrections applied are proportional to the original bias magnitudes, suggesting that the technique performs consistently across low and high debris concentrations. Spectral correction results in an overall 84% reduction in bias in simulations. The spectral correction technique is also applied to dual-polarization S-band radar observations of the 20 May 2013 Moore, Oklahoma tornado. Overall increases in Doppler velocity magnitudes, especially at lower elevation angles, imply that spectral correction can successfully reduce centrifuging bias in observed Doppler velocities. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  2. null (Ed.)
    A multi-radar analysis of the 20 May 2013 Moore, Oklahoma, U.S. supercell is presented using three Weather Surveillance Radars 1988 Doppler (WSR-88Ds) and PX-1000, a rapid-scan, polarimetric, X-band radar, with a focus on the period between 1930 and 2008 UTC, encompassing supercell maturation through rapid tornado intensification. Owing to the 20-s temporal resolution of PX-1000, a detailed radar analysis of the hook echo is performed on (1) the microphysical characteristics through a hydrometeor classification algorithm (HCA)—inter-compared between X- and S-band for performance evaluation—including a hail and debris class and (2) kinematic properties of the low-level mesocyclone (LLM) assessed through ΔVr analyses. Four transient intensifications in ΔVr prior to tornadogenesis are documented and found to be associated with two prevalent internal rear-flank downdraft (RFD) momentum surges, the latter surge coincident with tornadogenesis. The momentum surges are marked by a rapidly advancing reflectivity (ZH) gradient traversing around the LLM, descending reflectivity cores (DRCs), a drop in differential reflectivity (ZDR) due to the advection of smaller drops into the hook echo, a decrease in correlation coefficient (ρhv), and the detection of debris from the HCA. Additionally, volumetric analyses of ZDR and specific differential phase (KDP) signatures show general diffusivity of the ZDR arc even after tornadogenesis in contrast with explosive deepening of the KDP foot downshear of the updraft. Similarly, while the vertical extent of the ZDR and KDP columns decrease leading up to tornadogenesis, the phasing of these signatures are offset after tornadogenesis, with the ZDR column deepening the lagging of KDP. 
    more » « less
  3. Abstract The scientific community has expressed interest in the potential of phased array radars (PARs) to observe the atmosphere with finer spatial and temporal scales. Although convergence has occurred between the meteorological and engineering communities, the need exists to increase access of PAR to meteorologists. Here, we facilitate these interdisciplinary efforts in the field of ground-based PARs for atmospheric studies. We cover high-level technical concepts and terminology for PARs as applied to studies of the atmosphere. A historical perspective is provided as context along with an overview of PAR system architectures, technical challenges, and opportunities. Envisioned scan strategies are summarized because they are distinct from traditional mechanically scanned radars and are the most advantageous for high-resolution studies of the atmosphere. Open access to PAR data is emphasized as a mechanism to educate the future generation of atmospheric scientists. Finally, a vision for the future of operational networks, research facilities, and expansion into complementary radar wavelengths is provided. 
    more » « less
  4. Abstract Phased array radars (PARs) are a promising observing technology, at the cusp of being available to the broader meteorological community. PARs offer near-instantaneous sampling of the atmosphere with flexible beam forming, multifunctionality, and low operational and maintenance costs and without mechanical inertia limitations. These PAR features are transformative compared to those offered by our current reflector-based meteorological radars. The integration of PARs into meteorological research has the potential to revolutionize the way we observe the atmosphere. The rate of adoption of PARs in research will depend on many factors, including (i) the need to continue educating the scientific community on the full technical capabilities and trade-offs of PARs through an engaging dialogue with the science and engineering communities and (ii) the need to communicate the breadth of scientific bottlenecks that PARs can overcome in atmospheric measurements and the new research avenues that are now possible using PARs in concert with other measurement systems. The former is the subject of a companion article that focuses on PAR technology while the latter is the objective here. 
    more » « less
  5. This study utilizes data collected by the University of Oklahoma Advanced Radar Research Center’s Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) C-band radar as well as the federal KTLX and KOUN WSR-88D S-band radars to study a supercell that simultaneously produced a long-track EF-4 tornado and an EF-2 landspout tornado (EF indicates the enhanced Fujita scale) near Norman, Oklahoma, on 10 May 2010. Contrasting polarimetric characteristics of two tornadoes over similar land cover but with different intensities are documented. Also, the storm-scale sedimentation of debris within the supercell is investigated, which includes observations of rotation and elongation of a tornadic debris signature with height. A dual-wavelength comparison of debris at S and C bands is performed. These analyses indicate that lofted debris within the tornado was larger than debris located outside the damage path of the tornado and that debris size outside the tornado increased with height, likely as the result of centrifuging. Profiles of polarimetric variables were observed to become more vertically homogeneous with time. 
    more » « less
  6. Abstract When a tornado lofts debris to the height of the radar beam, a signature known as the tornadic debris signature (TDS) can sometimes be observed on radar. The TDS is a useful signature for operational forecasters because it can confirm the presence of a tornado and provide information about the amount of damage occurring. Since real-time estimates of tornadic intensity do not have a high degree of accuracy, past studies have hypothesized that the TDS could also be an indicator of the strength of a tornado. However, few studies have related the tornadic wind field to TDS characteristics because of the difficulty of obtaining accurate, three-dimensional wind data in tornadoes from radar data. With this in mind, the goals of this study are twofold: 1) to investigate the relationships between polarimetric characteristics of TDSs and the three-dimensional tornadic winds, and 2) to define relationships between polarimetric radar variables and debris characteristics. Simulations are performed using a dual-polarization radar simulator called SimRadar; large-eddy simulations (LESs) of tornadoes; and a single-volume,-matrix-based emulator. Results show that for all simulated debris types increases in horizontal and vertical wind speeds are related to decreases in correlation coefficient and increases in TDS area and height and that, conversely, decreases in horizontal and vertical wind speeds are related to increases in correlation coefficient and decreases in TDS area and height. However, the range of correlation coefficient values varies with debris type, indicating that TDSs that are composed of similar debris types can appear remarkably different on radar in comparison with a TDS with diverse scatterers. Such findings confirm past observational hypotheses and can aid operational forecasters in tornado detection and potentially the categorization of damage severity using radar data. 
    more » « less
  7. null (Ed.)
  8. On 27 May 2015, the Atmospheric Imaging Radar (AIR) collected high-temporal resolution radar observations of an EF-2 tornado near Canadian, Texas. The AIR is a mobile, X-band, imaging radar that uses digital beamforming to collect simultaneous RHI scans while steering mechanically in azimuth to obtain rapid-update weather data. During this deployment, 20°-by-80° (elevation × azimuth) sector volumes were collected every 5.5 s at ranges as close as 6 km. The AIR captured the late-mature and decaying stages of the tornado. Early in the deployment, the tornado had a radius of maximum winds (RMW) of 500 m and exhibited maximum Doppler velocities near 65 m s−1. This study documents the rapid changes associated with the dissipation stages of the tornado. A 10-s resolution time–height investigation of vortex tilt and differential velocity [Formula: see text] is presented and illustrates an instance of upward vortex intensification as well as downward tornado decay. Changes in tornado intensity over periods of less than 30 s coincided with rapid changes in tornado diameter. At least two small-scale vortices were observed being shed from the tornado during a brief weakening period. A persistent layer of vortex tilt was observed near the level of free convection, which separated two layers with contrasting modes of tornado decay. Finally, the vertical cross correlation of vortex intensity reveals that apart from the brief instances of upward vortex intensification and downward decay, tornado intensity was highly correlated throughout the observation period. 
    more » « less